Flexible binary space partitioning for robotic rescue
نویسندگان
چکیده
In domains such as robotic rescue, robots must plan paths through environments that are complex and dynamic, and in which robots have only incomplete knowledge. This will normally require both diversions from planned paths as well as significant re-planning as events in the domain unfold and new information is acquired. In terms of a representation for path planning, these requirements place significant demands on efficiency and flexibility. This paper describes a method for flexible binary space partitioning designed to serve as a basis for path planning in uncertain dynamic domains such as robotic rescue. This approach is used in the 2003 version of the Keystone Fire Brigade a robotic rescue team. We describe the algorithm used, make comparisons to related approaches to path planning, and provide an empirical evaluation of an implementation of this approach. Introduction: Path Planning in Robotic
منابع مشابه
Visual Tracking of Multiple Objects Using Binary Space Partitioning Trees
The use of visual sensors may have high impact in robotic applications where it is required to measure the pose (position and orientation) and the visual features of objects moving in unstructured environments. In this paper, the problem of real-time estimation of the position and orientation of of multiple objects is considered. Special emphasis is devoted to the case when two or more objects ...
متن کاملNear-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver
The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. 
This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time op...
متن کاملNear-Minimum Time Optimal Control of Flexible Spacecraft during Slewing Maneuver
The rapid growth of space utilization requires extensive construction, and maintenance of space structures and satellites in orbit. This will, in turn, substantiate application of robotic systems in space. In this paper, a near-minimum-time optimal control law is developed for a rigid space platform with flexible links during an orientating maneuver with large angle of rotation. The time opti...
متن کاملGravity-Compensated Robust Control for Micro-Macro Space Manipulators During a Rest to Rest Maneuver
Many space applications require robotic manipulators which have large workspace and are capable of precise motion. Micro-macro manipulators are considered as the best solution to this demand. Such systems consist of a long flexible arm and a short rigid arm. Kinematic redundancy and presence of unactuated flexible degrees of freedom, makes it difficult to control micro-macro manipulators. This ...
متن کاملManipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003